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Abstract

An integral representation for the particle velocity in terms of a

Green's function and certain linear combinations of the inelastic strain

rates-has been used in thispape, both for a numerical method to compute 0.

full field solutions and to develop unequivocal asymptotic expressions for

the near-tip fields. Specific results have been obtained for a stationary

crack in a solid whose constitutive behavior is represented by the Bodner- .

Partom model. It is shown that the leading term of the near-tip particle

velocity is of orderr and the higher-order terms are of the forms r logr

and r. Expressionslhave beei: derived for the angular variations and for the

multiplying time-dependent intensity factors. The r logr term is absent

for the Mode-Il case. Two questionsthave-bnein addressed in further detail:

the dependence of the multiplying terms on time and the importance of the

higher-order terms. The numerical results show a stress intensity factor

which decays with time. At a small distance from the crack tip the numerically

computed normalized opening stress (t)/22 (XlO ,O)-has been ,compared

with a one-term asymptotic representation. i.e., with K1 (t)/K.(O).",The two

curves diverge at very small values of time. he'inclusion of a second term

in the asymptotic expression for the stress gives very acceptable agreement

as time increases.
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1. Introduction

A clear understanding of the mathematical structure of the fields of stress

and deformation near a stationary crack tip is an essential prerequisite to

an investigation of conditions for the onset of crack propagation. In a

visco-plastic solid the fields in the immediate vicinity of a crack tip can

be very intricate. In this paper near-tip visco-plastic fields have been

investigated in detail for a class of constitutive models for which the

inelastic strain rate approaches a bounded value as the stresses increase

beyond bounds. The Bodner-Partom model [lb, which has been shown to describe

. the mechanical response of a wide class of materials, displays this particular

behavior of the inelastic strain rate.

Fields near a crack tip are usually analyzed asymptotically by assuming

a near-tip field of the general form r f(8). When this expression is sub-

stituted into the governing equations and into appropriate boundary con-

ditions, and terms of equal order in r are collected, there results a

nonlinear eigenvalue problem, which yields both p and f(O). For visco-

elastic solids this method was used by Riedel [2] and Riedel and Rice [3],

who investigated the near tip fields of stationary cracks for Mode III and

Mode 1, respectively. They considered a viscoelasticconstitutive equation

of the power law type. For the Mode I case their asymptotic solution

displays the well-known HRR singularity if the power is greater than one.

When the power is less than one, the solution becomes square-root singular.

iI
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Hui & Riedel (4] considered quasistatically moving cracks for both Mode I

and Mode III conditions. When the power is greater than 3, their singularity 4
is different from both the HRR and the square-root singular forms, while for Nt

a power less than 3 it reduces to a square-root singularity. Lo [5]

followed the Hui-Riedel approach, but he took into account the effect of

inertia.

The implications of square-root singular as crack-tip fields for visco-

plastic solids have been explored by Hart [6] and Freund and Hutchinson (71.

For a Mode III quasi-static steady-state analysis, Hart [6] related the stress

intensity factor at the tip to the corresponding far-field quantity. He also

discussed transient cases on the basis of certain assumptions. Freund and

Hutchinson [7] developed a similar relation between the tip and the far-field

stress intensity factors for the dynamic steady-state Mode I case, using an

essendally linear relation between the stress and the inelastic strain rate.

In this paper a more fundamental approach towards the computation of near-

tip fields is presented, in the sense that asymptotic forms are not assumed

a-priori. Instead, the particle velocity field is expressed by a representation

integral over the complete domain of the cracked body. This integral involves

an elastic Green's function and linear combinations of the inelastic strain .

rates. Since the inelastic strain rates are bounded at the crack tip, the

integral can be expanded in terms of the distance to the crack tip, to yield

an unequivocal expression for the near-tip field. Details have been worked

out for a stationary crack tip. It is shown that the leading term of the

particle velocity is of order r ,and the next terms are of the forms r logr



and r. Expressions have been derived for the angular variations and for

the multiplying time-dependent intensity factors. The r logr term is absent

for the Mode-III case. Two points are of interest: the dependence of the

multiplying terms on time and the importance of the higher-order terms.

The representation of the particle velocity in terms of an appropriate

Green's function and the time-rates-of-change of the inelastic strains has

not only been used to obtain near-tip asymptotic expansions of relevant field

variables, but also to develop numerical solutions by the use of the boundary

integral equation method, in conjunction with an iteration technique. The

numerical calculations have been carried out under the assumption of small-

scale yielding. Thus, the equations of the Bodner-Partom model have been

used in a region around the crack tip. The conditions on the boundary of

this region are provided by the singular term of a corresponding elastic

solution. The results show a stress intensity factor which decays with time.

At a small distance from the tip the numerically computed normalized opening

stress T22(xlO,t)/T22 (X,0,0) has been compared with a one-term asymptotic

representaeation, i.e., with K(t)/K(O). The two curves diverge at very

small values of time. The inclusion of a second term in the asymptotic

expression for the stress gives very acceptable agreement as time increases.

As early as 1971 the boundary integral equation method (BIEM), also

called the boundary element method (BEM), was applied by Swedlow and Cruse

(81 for elasto-plastic material behavior. In recent years the method has

been used extensively for the numr'ical analyses of viscoelastic/plastic

solids of various shapes including bodies containing cracks. Recent work

was sumarized by Mukherjee [9].

-. - - - - -° - - w . .. . . . .
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2. Formulation

The states of deformation that will be considered are two-dimensional,

either plane or antiplane strain. The body contains a straight crack. At

one of the crack tips, say Alt the applied loads give rise to elastic stress

itniyfcosKIt.K ()and K II(t, if the material were linearly *S

elastic. We will, however, consider a material that displays inelastic

behavior as the stress level increases. Hence there will be a domain of

inelastic deformation near the crack tip. It is, however, assumed that this

domain is small as compared to the crack length, and that linear elasticity%

applies outside the near-tip domain of inelasticity.

To analyze the field right near the tip A,, we follow the arguments that

have been introduced for small-scale yielding. Thus, we magnify the geometrical

scale near A., so that the geometry becomes one of a semi-infinite crack in a

full space, as shown in Fig. 1. A cartesian coordinate system is centered

at the crack tip. For the plane strain case, possible boundary conditions

on the bounding surfaces of the body are replaced by the asymptotic condition

r E +E '1

as r - ,where Pi is the shear modulus, and (r,e) are polar coordinates

centered at the tip in the magnified configuration. Note that the definition

of the stress intensity factors differs from the conventional one by the

factor (2i) The functions f and f give the angular variations of the
-I ~II

cartesian components of the elastic near tip displacements for modes I and II,
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2 cosO/2 - cos36/2 \

f1e i1 / (2. 2a)
(K + sin/2 - sin3e/2

(Kc +. .) sin6/2 + 1 sin38/2

-3 1 *(2.2b)

(-Kcj cosO/2 - -cos3e/2

where

K A+3U(2.3)

is a constant in terms of the Lam4's constants X and U

We now proceed to the governing equation for the problem. The strain

rate

M - 1[4+(4T (2.4)

at 2
is usually decomposed into the elastic part and the inelastic part

e as

e +eji (2.5)

* The elastic part is related to the stress rate i by Hooke's law,

Xjtrje + 2,,e ,(2.6)

? where 1 is the unit tensor and "tr" is the 3-D trace. Since the effect of

inertia is not considered, the equilibrium equation applies: S
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V - 0 * (2.7)

An equivalent form of (2.7) in terms of the displacement rate C follows

from (2.4), (2.5), (2.6) and (2.7) as

* .(2.8)

where
#'. "4

A*U - UV2u + (X+V) 77-A (2.9)

and for convenience we have introduced the quantity by ..

A ~i
a Xltr + 2ui (2.10)

Equation (2.8) is the governing equation for our problem. This equation,

together with the boundary conditions

E:- i.n - 0 on x 0 x < 0 (2.11)

and an asymptotic condition of the form (2.1) with u and ,II replaced by A

4 and K defines 4. When K -II  0, the behavior of the elastic solution

away from the crack tip becomes

- 0 (r). (2.12)

To complete the formulation, we supplement these equations with the regularity

requirements at the crack tip:

" bounded as r +0 (2.13)

r o(l/r) as r + 0 (2.14) N

In the present problem, we will also discuss the mode-III case, where

T - u - 0 (aj - 1,2). We prefer to use the stress function

because it makes the stress computation easier. The stress function defines

the stress components
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T :L T ac3 (a 1. 12) (2.15)

as

r -e (2.16)

where e 8 is the permutation symbol.

The compatibility condition

e a i8a M 0 , (ea e a3 (2.17) -..,..

together with (2.5),(2.6) and (2.16) yield the governing equation

.i - U (2.18) '

The boundary condition on the crack faces and the regularity condition

analogous to (2.14) yield

*= const (2.19)

on the crack faces with the constants for both faces being the same. Also,

on the crack line, we have

a -0. (2.20)
12

Finally, the asymptotic condition is

-2r 411(t) coe1e as r- . (2.21)

When KCII(t) - 0, (2.21) is replaced by

* -31(r ) as r + . (2.22)

In this case, the constant in (2.19) is zero because *(0) - 0, as follows

from

0 f 2 dx1  - f a Odx, - (0) 0 (-) 0 (0) (2.23)
0 0

* 1."
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where (2.22) has been used.

In the sequel, we will consider only the cases where ..

Kj11 1 1 11 (t) -0 .(2.24)
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3. Representation, of the Velocity Field

The term on the rift-hand side of the displacement-rate equation (2.8)

is of the nature of a body-force distribution. This implies that the solution

to Eq.(2.8) can be expressed by the use of a Green's function. Representations

in terms of Green's functions are at the basis of the boundary integral equation

method (BIEM), and they have therefore become quite well known. For rate-type

inelastic analysis the appropriate representations were first developed by

Swedlow and Cruse [ 8]. This Section gives a brief derivation of such repre-

sentations for the purpose of making the paper self-contained. For further

detail we refer to Mukherjee [ 9] and the papers cited there.

For an unbounded body containing a semi-infinite crack, the Green'sC.-

function G(x,y) is defined by

A*G(ry) = 6( -y). (3.1)

- where x - (xlx 2 ), = (yly 2), and the operator A*x is defined by (2.9).
+

On the faces of the crack (x< 0, x2  0-) we have

TxG(xy) - 0 (3.2)

where T G stands for the elastic tractions computed from G. We also have El
x-

G(x,y) - O(loglxI) as Ix- (3.3)

G(x~) - 0(1) as Ixsl - 0 , (3.4)

7 G xG y)' 0(1/Vjxi) as xI - 0 . (3.5)
".x

- A standard analysis based on Muskhelishvili's method yields G(x,y) as

+ i G.

= - log(Vz-/zo) (i - V' )V"
G + i G'L )r(IK -0o&~+ 012 22 24w'Fz (Vz + V )o0= 0

-"~- -21og(Iz+Vff) log(V/Y + ,/z) .
0 0oF
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+ K 0 + + I z-z + 0 (3.6)
Ai r (i-~,- V"-(Z+/) + (\z-Zo VI V17 JJ

0 0 2(z-z)

where K is defined by (2.3), and V

z = xI + ix 2 , zo = yl +  y2. (3.7)

Equation (3.6) agrees with the expressions given by Erdogan [10].

A suitable representation of the solution to (2.8) is obtained by the use

of Green's identity:

(A (*)w dA - (A w).v dA =f (T v)-w dc f (T w)-v dc ,(3.8)

A - x - -- x aAR, A, R,e @AR,"

which holds for an arbitrary pair (y,w), and where A R,E is the domain bounded

by circles of radii e and R (0 < e < R) centered at the tip, and by the crack

faces, as shown in Fig. 2.

We now substitute a(x) for v(x) and G(x,y) for w(x) in (3.8). Subsequent

use of the divergence theorem and the regularity conditions (2.13), (2.14),

(3.4) and (3.5), followed by letting R e , 0, and using (2.12) and (3.3),

gives

y(xt) . iV G(yx) -(yt)dAy (3.9)
- y

R2

or. in component form

u.(x,t) = f (y~x)ok(yt)dA . (3.10)f -j Rk ~ y "

R2

In deriving these equations we have assumed that the integrals in (3.c "

or (3.10) converge. For this to be true, it is sufficient to assume that

satisfies



O(r I  as r 0. (3.11)
,i,

c2
O I o(r ) as r (3.12)

with

Ci > -1 , 2<-i. (3.13ab)

Although (3.13a) appears unnecessarily restrictive, it turns out that

these inequalities guarantee the satisfaction of the conditions (2.13) and

(2.14) automatically. It is noted, however, that (3.13) is just a sufficient

condition.

For the Mode III case a similar procedure gives

(~t f a y G(Qx~j Qk,t)dAy (3.14)

R 
y

where

1z (/- '/Zo) (VI,"- VIo 4)

G~,)=- log 0• (3.15)
(1/z + V11 (A' + ¢ o

Hence we have
p(x,t) e e q yG(yx)ej (, t)dA (3.16)

P pq q f
pR
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4. Asymptotic Expansions

In the following sections, we employ the potential representation for

given in Section 3. The results of this section are analytical, while

numerical results are presented in Section 7.

For a certain class of constitutive models the quantity i given by

Eq.(2.10), is finite. For example, a viscoplastic model proposed by Bodner

and Partom [ 1] shows this property. In this section we will obtain the

asymptotic expression for C for the case that lim 6 (r,O,z) exists for- all 8.
r+O

In a conventional asymptotic analysis one seeks near-tip fields of the

forms

- 1 +  2 3 (4.1)
.i .i .i .iAi ffi + -°2 + a0 + _ (4.2)
- 1 -l 2 -3+

.iwhere aj, a (j - 1,--) are functions which are less singular near r -0

with increasing subscript. Since near r - 0 -

a- a i(o,8,t) + o(1) (4.3)

is bounded, and,:.
.i

V. 1 - t) (4.4)

1l r-

we find by substituting (4.1) and (4.2) into (2.8)

A*i 0 (4.5)

-l-

i ', -
r''D

. %.*..~~~~~~~~~\** ~~ .............................

. . . . . . . . . . . . . . . . . . . . . . . . .. . . .•
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A*,! 2  F' i  0 (4.6)

* Equation (4.5) implies that u"1 is of the same form as for the linearly

elastic case. The appropriate separation of variables form of (4.6) can only

be guessed at this stage. One might try

.r f(e,t) (4.7)

This expression for f(8,t)does, however, not lead to a solution of (4.6)

because the corresponding homogeneous problem has nontrivial solutions. In

the Mode I case, for example, the homogeneous equation

A*[r 10,03 = 0 , (4.8)

with boundary conditions

e = it: T[r 1(6,t)] = 0 (4.9)

e - 0: 1.Tr f(-,t)]0 and i2[r f(8,t)] = 0 , (4.10a,b)

" where i are unit vectors, has a solution corresponding to a uniaxial tensile

field in the x direction. Hence the approach based on (4.7) becomes

ambiguous at this point. p...-
p'

An unequivocal form of the term u can, however, be obtained directly

from the representation given by (3.10). Using polar coordinates (r,e) and

(ros) for y and x, we split (3.9) into two integrals as
0 irr

- / [O.t r).(retdd
-T0

+ r VG (r,;r , ).a (r,,t)drde (4.11)

00-itr

. %t.
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Here the gradient operator is taken with respect to the polar coordinates

rand 0. Next VG and VG are expanded into power series of r. We can

n+1
r 2

r < r: r VG = Z (-) M (6.6 (4.12)0 r n+l an=0 0

n+1

r > r: r VG, - () N (0,0) (4.13)0 r -n+1 0

The coefficients in (4.12)-(4.13) can be obtained from (3.6). It is found

that No is independent of 8o0

Substitution of (4.12)-(4.13) into (4,11) yields after some rearrange-

ments

'O) f + f (a )rk + I<(r o le + I> (rose) (4.14)

"d

where

I-f i
f f I N(0)." (r,0)drd0 (4.15)

1 0 T 0
i(o- J rNl(0,0o)' i(r,0)drd0 (4.16),."

-loo 1 a -"

-7r 0

"(r-0o) n-a o Mn+t(0'O°)]-° (rO)drde
-Tr 0 (4.17)

I, r n+1

i> (r0 - °  ni Nn+l(eeo)] i(r,B)drd0 (4.18)

The dependence on time t, shown in (4.11) is implied, but not explicitly shown

in (4.14)-(4.18) and in the sequel. In the next step the orders in r of the

oMN
integrals (4.17) and (4.18) are determined.

.1.I
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Since q (r,O) has an estimate given by (4.3) it follows that (4.17)

is of order r., i.e.,

< (r 0 6O 0 r A io) + o(r0) (4.19)

where

*A(O 0) f 2 -W n 1o)- 6 2 N 1 6,e 0 (0,8)de (4.20)
7T n-0

* A discussion of the order of the integral in (4.18) is given in Appendix A. -

The result is *

I:,(rove) 0 f2(e)0 r 0log r 0+ r 0 ~d+ o(r ) (4.21)

where

f2 (0 0 f- 26'o (O,6)dO (4.22)
Tr

The function B(O ) is defined by Eq. (A.6). By combining (4.14), (4.19)

* and (4.21) it is concluded that Ci(roe ) is of the form
~0

Uirog (a =f f 1e1r + ; (e )r 0log r + f(0 )ro +0o(r) (4.23)o o 1l o -2 o 0 o f300 0

* where

f 3(6) o A(e )+B(6 ) (4.24)

The constant f in (4.23) corresponds to a rigid-body motion; it will

be left out from further considerations. Some additional manipulations

reduces i 0 and 2(9 tth fom

(6 K 1f( +0 K 1  1()y2u, (4.25)
0) (f4o ii
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i 2(60 -t/(K+l)cos) + LI sine (.6f~(8 - L (K-3)sine) LII -cose)

where fi(0) and f11 ( 0 ) are defined by (2.2ab), and

l 2( +1) f r D (r ,t)drd (4.27)

Also

Li 1 ~t) l 8wU (iE+1) 0E .&( oe,t)de (4.28)-1::: -

In (4.27)-(4.28)

5 38 3 7 3 sin 3 e 3  7 8 in1/(K - csT2 + - - 2 - 2 2 2 2J

38 3 7e 1 38 3 70)' (4.29a)
- sin T"- + 73 sin (K +7) cos T 2 cos -)

1 38 3 70 1 38 3 7essin in - o--+-co
D 'cos - cos 2 p (4.29b)1 3os 7 e +

7. - + -coB- 3 3 sin

(I K)c2 - 2cos4O- 2sin4 ) a

-2 sin48 (1-K)cos28 + 2cos46 ,4.0.

(K-3)sin26 + 2sin4e, 2(cos26 - cos48) \EI- (1+t<z) " . (4.30b) -"\2(cos2e-cos48) (-3)sin28 - 2sin4 1  (

It is shown in Appendix A that f 3 (8) can be written in the form

7r (K+)COSOsinef3(() ;8 •.iO8d +d( :+l)c°Seo) + / ao.-

l3(e 0 + 0 2  (4.31)i"-1' l'-)sin0o -caSeo/

0 0

The function P(6;6 ) is complicated. For the Mode I case we find after

lengthy manipulations

-7% .
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(e - _;e )Xl- k ' x £I)6i(0,e)V~de-
0

1! i

S F(e;eo)(2( x Z' + V x 2) (O,e)2'de+ f F(e;e)(1 2 Z' V)
,.+f f l

0 7

(O,e)2.d6 2 f(O;eo)(g(e) + 22.)dO-

(3K)L tline) + C' (e ) (4.32)

0where C is a constant, and..

(cos(min(e,eo))sin(max(e,e )0
F(e;e o  0 0 43) "'

0 -sin(min(e,6 0))cos(max( ,e) )r(.3

Also

/cose -pine
( = , C ( 1(4.34ab)
\sine / cose/

( +l)cose
g(e) (4.34c)

(c-3)sine

The symbol x defines a product of a column and a row vector. For

example

Fosel [cosO sine Cos 2 6
z X' cie [-sine cose] - sin (4.35)Lsine] L-sing e cose ieG

Equation (4.23) implies that the dominant singularity of the strain rate

has exactly the same form as in linear elasticity. The rates of the stress

intensity factors are given by (4.27). The second singular term, is of IV

the order of logr near the tip. The magnitude of the multiplying term is

determined only by the distribution of a at the tip. Because of this last

-- I~r'

*'? *..iv.. -
- -€_,% . *C*."- " - ', ' .. *.* -.. *.- - .*-',,... ,.. : / , , . ,. . - - -.,,......-.. .*,. . , .. ....* ,, * .* * .
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property, the expression (4.28) holds true for any crack configuration,

whereas (4.27) is true only in the sense of the "small-scale yielding".

The logarithmic singularity in the strain rate does not give rise to a

logarithmic stress singularity except in T for mode I.

For the mode III case, we can use the same general approach to show that

K- r) + (O) , (4.36)

C 2

where

-1  . 8 4.1
1 f dO f r-6'(r O)si30 + 62 (r8e)co3e ]r_ dr (.7

hkeo 0 [9".ai(o.6)cose -6 (.0,B)sine] de
0 Ol 0"~

0

1 e
- I6 (OIBo ) ] -&*a(O,4sin]8d ...

0 t&(, 1. (4.38)

Note that the stress rate and hence the strain rate do not have logarithmic

singularities. As for the mode I case, we can relate the absence of the

logarithmic term either to the non existence of a non-trivial solution to a

certain boundary value problem or to the lack of a certain term in the far

field expansion of the Green's function.

In the published literature, the choice of terms for asymptotic expansions

is generally made on a trial and error basis. The analysis presented in this

section gives a more rational foundation to asymptotic near-tip.

.. .. .-.'. . .
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5.. The Bodner-Partom Model

In Ref.[l 1 Bodner and Partom proposed a set of constitutive equations

for an elastic-viscoplastic material. These equations have the convenient

property that no separate specification of a yield criterion is required, nor

is it necessary to consider loading and unloading separately. Within the

context of the Bodner-Partom model both elastic and inelastic deformations are

present at all stages of loading and unloading, but the inelastic deformations

"" are very small at low stress levels. The Bodner-Partom equations have been

used to model the mechanical behavior of several metals over a wide range of

temperatures and strain rates. Very satisfactory agreement between theoretical

* and experimental results has generally been obtained. For a recent discussion i.

of the Bodner-Partom model we refer to Ref.[IlZ.

The constitutive equations follow by supplementing Eqs.(2.5) and (2.6)

with an expression for the rate of inelastic strain. In a recent version of

the Bodner-Partom theory this strain rate is given by, see [12],

= oD exp[-(Z2/3J 2)n/2]. (5.1)
0 2

where T' is the stress deviator

T tr1 (5.2)-1 tr

3-

and

21,- .(5.3)
2 2-

Also

771

-!A. ::7,
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-mW
Z- Z1 + (Z -z )e P (5.4)

In (5.1) and (5.4), Zoo ZIs m,n and D are material constants, while W iso p
the work over the inelastic strains,

f Jr. i dt . (5.5)
p

For uniaxial tension it is simple to plot the inelastic strain rate

versus a/Z. For various values of n the curves are shown in Fig. 3.

The linear plot of Fig.3 shows that i remains very small at small stresses

with a rapid change over a small range of a/Z (the "yield" region), and that

an asymptotic limit is approached as a becomes large.

It is of interest to note that the components of ei as defined by

Eq.(5.1), are always bounded. Even if T is singular (which is the case at a

crack tip), the singularity of T as r - 0 will be cancelled by the singularity

of V2 in the term T-'/2" The term exp[ (Z2/3J )n/21 is bounded whether J

is singular or not. Hence Eq.(5.1) implies that the inelastic strain rate is

bounded at a crack tip. It then follows from Eq.(2.10) that the components

of a are also bounded at a crack tip, and it can thus be concluded that the

asymptotic results of Section 4 apply to the Bodner-Partom model.

I.?.1

?'.
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.6. Numerical Procedure

A numerical procedure has been developed to compute the stress intensity

factor and the opening stress T22 at a position on the crack line. As pointed

out by Mukherjee and co-workers [13], a numerical evaluation based on the

representation (3.9) is very efficient for viscoplastic problems and for

viscoelastic problems of the Maxwell model type. Here we use this approach

(generally referred to as the BIE method) for crack tip fields governed by the

Bodner-Partom equations. The procedure proceeds as follows

i) Compute the initial field. Since the inelastic strain is zero at

t -0, the initial field is simply the linearly elastic one. In the present

context this field is

I /r E E
--- [Kifl (0) + K 1 1f 1 1 (e)] (6.1)It- 2

Hence, the solution is known for t = nAt with n 0 0, where At is the time

increment.

2) Subdivide the near-tip domain into cells, and compute i at the

centroid of each cell by using (5.1). Then assuming that d may be taken as

constant over each cell, C is computed by using (3.9) and Vu" by

differentiating (3.9).

3) Compute i from (2.5) and (2.6). Update T by using

*r[(n + 1)Atl - r(nAt) + At f(nAt). (6.2)

4) Use the updated value of r to compute an

and 3).

When the edges of the cells are straight, the integrals involved in

I-r-

...........- ---. * . .... .... ...
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(3.9) can be evaluated analytically, as discussed by Cruse and Polch (i11.

By picking up the square-root singular terms in these integrals and summing

up their coefficients, II can be computed. Alternatively, the computation
of , may be carried out by using (4.27) with the piecewise constant

approximation for P.

.'°.-
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•7. Numerical Results

Numerical computations have been carried out for the non-hardening case

of the Bodner-Partom model. With reference to Eqs.(5.1) and (5.4), this

case corresponds to

zoZ 1 - 1 (7.1)

It is then convenient to introduce non-dimensional quantities as

follows

U - u (Z/V3)/(K:) • T , /(Z/V3) (7.2ab)

xc = Id(Z2/3)/(KiE) t t (l4Do)/(Z//3) (7.3a~b) ":ii

E /D (7.4)

Here the dot notation represents the derivative with respect to t. In

terms of these dimensionless quantities, Eqs.(5.1), (2.6) and (2.8) convert

into

T + VU+ (VU)-2E (7.6)

F + .a U "2V i  (7.7) 1

where V and 2 are the del operator and the Laplacian with respect to the

dimensionless optical coordinates xis and T' is the dimensionless stress

deviator. Since X/iv and (A+p)/4 can be expressed in terms of the elastic

Poisson's ratio, v , it now follows that numerical values have to be chosen

only for v and n. Here we choose

n 1 , and v - 0.2 (7.8)

. C,
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For the numerical procedure based on the boundary integral equation

method described in Section 6, the cell arrangement shown in Fig. 4 has

been used. The expression for the time rate of change of the stress intensity

factor is given by Eq.(4.27). Once the inelastic strain rate has been

.i
computed, the term oi can be determined and (4.27) can be evaluated

numerically. A subsequent numerical integration with respect to time

produces gure shows K(t)/KE  versus the dimensionless time t.

It is noted that KT(t)/Y4 decreases with time. Also shown in Fig. 5 is

the normalized stress T2 2 (xi Ot)/T2 2 (x1 ,0,0), evaluated at x= 0.0014. The

two curves diverge rapidly as the dimensionless time increases.

It is instructive to compute the actual physical distance to the crack

tip which would correspond to x,= 0.0014. Suppose we consider a crack in an

unbounded medium under far-field uniform tension = a . Then
22 0

E
K = a V(Tra). For titanium, Ref.[l] suggests the following value for the yield1 o

stress, a - 250 N/mm, while Z - 1200 D/mm
2 . Let

a - a /2. Equation (7.3a) then yields Q~ 0.102ax.,. Hence x1 0.0014
0 y 1'

corresponds to xi- 1.428x10 a, which is a very short distance to the crack

tip. The two curves in Fig. 5 thus imply that even very close to the crack

tip, the singular term by itself would give a very poor approximation to the near-

tip stress r22, with an error which increases with time t. The relation

between physical time t and dimensionless time t can be obtained from (7.3b)

as t -.635x106t, where the following values from Ref.[1] have been used

104 /sec and P± .44x10SN/mm2. As predicted by the constitutive model
0 "._P-

",,. °
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used in this paper, the relaxation of the stress intensity factor takes

place very rapidly.

An improved asymptotic representation of the near-tip stresses can be

obtained by including higher order terms. The calculation of these terms

requires the evaluation of the integrals for Lit Eq.(4.28), and

Eq.(4.32). The r logr term in Eq.(4.23) contributes only a constant term

to i 22 A constant contribution is also obtained from the term f3(0o)ro .

After the calculations have been completed we find on the crack line (e - 0)

T22 ~ S _ 3.376 (7.9)
22 -

q

or
K(t) -..

T22 ~ t - 3.376t . (7.10)

This two term expansion gives excellent agreement with the numerical result,

as can be seen from the numerical values listed in Table 1.

-EFigure 6 shows K.ii(t)/Ki versus the dimensionless time t. Also

shown is the ratio T2 (z,0,t)/T(x, 0) evaluated at x 0.0047. As for the Mode I

case, the two curves diverge rapidly as t increases.

It is relatively simple to write out explicitly the asymptotic results

for the Mode III case. At the crack tip we obtain from Eq.(7.5)

-sin--e

-(0.8) (7.11)

Use of this result in (4.36)-(4.38), and subsequent integration with

respect to time yields
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The values of T2 at x 1 . 0.0047, x 2 = 0 computed according to Eq.(7.12) and

by the BIEM have been listed in Table 1. Good agreement is observed.

The results presented in this section show that the square root singular

term presents a very poor approximation to the crack tip field even at very

small distances from the crack tip. The approximation becomes worse as

time increases. The use of additional terms in the asymptotic expression

for the particle velocity provides, however, a very satisfactory agreement

over the whole range of time between the corresponding asymptotic represen-

tation and the numerically computed stress component at a crack-line point

just ahead of the crack tip.
. ...
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Appendix A: Finite Parts of Integrals

The "finite part" of an integral, denoted by pf, is defined as

(see [14], pp. 75-104)

pf f(x)dx - ln f(x)dx - divergent part as R-*, e-o] (A.1)

o

A typical example is

r logr° ni-l

pf r n n (A.2)0f -r " I r l -

0 n> 1
1-n

For small r it then follows that
0

r (logr ) (0,0) + o(r) n
r (r.6)o 3 (r,0)1

pfdr (A.3)Pf n

0 r11-n A 1o
o r (y- ro - ) ai ( 0 ,6 ) + °(rl-) n > I

where we have used that a (r,O) is bounded at r-0, see (4.3). Consistent with

the definition (A.1), it is convenient to rewrite (4.18) in the form
n+1 r n+l

op 2 i '2(e,e o ) = d6 Z f r - Nn(0 ) (r,0)dr - pf r. -

> i r -n+1 0

Nn+ 1 6, aoi(r,0)dr]} (A.4)

By using (A.3), Eq. (A.4) can be rewritten as

I 0 r logr + r B(0) + o(r 0 ) (A.5)

where
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has been defined in (4.22) and

q (r,6 n 2 n- n1
17f d(L 2(6,6) Pf r rn- 0 N_66)& (0.6)] (A.6)

Equation (A.5) shows that the order of I as r-0o is defined by terms r log r0
.> 0 0 0

and r.
0

It is too complicated to compute all the terms in Eq.(A.6) by using the

expansion given by (4.13). Another way of computing the relevant terms follows
i.t4

by considering Eq.(4.11) for the case & (r,et) 1. From (4.11), (4.14),

(4.17) and (A.5) it then follows that

C 2pf rVGdr-r[ E - 20 O n+ 3 n+1(e'e°) +  -N (6,6)]onOn--i n-i -n1 0-

n# 1

-N (e 0) r log r°  (A.7

Next we define

?(Oe pf frVGdr + N.(8.80) log ro (A.8)

It can then be verified that

.(6/- iT 1 (c+I)cOSeo sinO (A."):
(3a f (e.86)4 (0,6)dO +) C C (Ao9)

(K-3)sinO -cose 0

The terms with the constants C1 and C2 come from the first integral of

(A.6). The constant C2(Ci) vanishes for having Mode I (II) symmetry.

.... ..... e
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The manipulations that are required to evaluate (A.8) by the use of (3.6)

are lengthy and complicated. For the Mode-I case the result is given by

Eq. (4.32).

Now that the third term in the expansion (4.23) is known explicitly,

namely,

-2 i2 ()rlogr (A.10)

and it is known that A" is of the form

33-f3(e)r .(~l

an alternative way of computing 3() is provided by returning to the
A -3

substitution method outlined by Eqs.(4.1)-(4.6). By collecting terms of

order r we find

a C**. + Va (A.12)
Ax r3() =xU2 + -1

A direct calculation shows that rA u2 is a function of e only. Hence the

-1terms on the right hand side of (A.12) are r times a function of 6 . The

standard Fredholm argument shows that for boundary conditions appropriate to

Mode I, (A.12) does have a solution which is unique to within a term which

would give rise to a uniform contribution to Tii" The solution to (A.12)

can now be determined by well established methods. The result is given by

Eq. (4.32).

'. A
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Mode I Mode III

tiiD
Z/T3 2 2 (KZIV3) L 2 I.IJ

2 terms BIEM 2 terms BIEM K .

1 22.18 22.28 13.04 13.10

2 18.78 18.82 11.05 11.17

3 14.47 14.35 8.93 9.12

4 10.08 10.42 6.84 7.12

Table 1: Comparison of asymptotic representations with numerical

results calculated by the BIEM.
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